ในทุกๆกระบวนการจะมีผลของความผันแปรจากแหล่งต่างๆ ที่แปรผันตามเวลาอยู่ด้วยเสมอ ผลิตภัณฑ์ที่มีการ ออกแบบการตั้งค่าปัจจัยการผลิตให้เหมาะสมที่สุด แต่ในการผลิตจริงค่าปัจจัยทั้งหลายนี้ มักจะมีค่าเบี่ยงเบน ออกไป จากค่าที่ตั้งไว้เสมอ ความแปรปรวนของสิ่งแวดล้อมและความผันแปรของกระบวนการผลิตเป็นสาเหตุหลักที่ส่งผลทำให้เกิด ปัญหาด้านคุณภาพ ดังนั้นการมุ่งเน้นในเรื่องการลดต้นทุนและประสิทธิภาพ ในกระบวนการอาจไม่เพียงพอ ประเด็นสำคัญที่ควรพิจารณาคือ เรื่องปัจจัยที่ทำให้กระบวนการมีความบกพร่องและปัจจัยที่ทำให้กระบวนการ มีความไวต่อความแปรปรวน หลายๆครั้งที่ไม่สามารถกำจัดความผันแปรอันเนื่องมากจากปัจจัยที่ไม่สามารถควบคุมได้ เช่น การเปลี่ยนแปลงของ อุณหภูมิ การปนเปื้อน ความชื้น ฝุ่นละออง เป็นต้น เช่น ผลิตภัณฑ์ที่ผลิตได้ของบริษัทคุณมีการนำไปใช้ในงานในที่ๆ มีสิ่งแวดล้อมต่างๆ กัน หรือนำไปใช้ในวิถีทาง ต่างๆกัน (รวมไปถึงสิ่งที่ไม่ควรนำไปใช้กับผลิตภัณฑ์นั้นๆด้วย) หรือแม้แต่กระทั่งกระบวนการผลิตเองมีการ เปลี่ยนแปลงตลอดเวลา (โดยที่มีการออกแบบ ควบคุม และปรับตั้งกระบวนผลิตอยู่เสมอ)
ความร้ายกาจของความผันแปร ผลิตผลิตภัณฑ์ ถึงแม้ว่าความผันแปรจะเกิดขึ้นอย่างต่อเนื่องในกระบวนการ แต่ขนาดความผันแปรที่จะเกิดในผลิตภัณฑ์นั้น อาจทำให้มีขนาดเล็กลงได้ แต่ต้องมีการชี้บ่งแหล่งกำเนิดความผันแปรที่ทำให้เกิดความแปรปรวนในกระบวนการ เสียก่อน จุดประสงค์ คือ การลดความผันแปรของปัจจัยตั้งต้นที่ส่งผลกระทบต่อระบบในส่วนสุดท้าย ในการประเมินค่าผลกระทบของปัจจัยรบกวน (ปัจจัยที่ไม่สามารถควบคุมได้ของระบบ) ด้วยวิธีการ ANOVA ผ่านกระบวนการออกแบบการทดลอง หรือ การวิเคราะห์การถดถอย ปัจจัยที่สามารถควบคุมได้บางตัวในระบบอาจมีปฏิกริยากับปัจจัยรบกวนบางตัวนี้ ทำให้การจัดการปัจจัยรบกวนนี้ สามารถปรับเปลี่ยนได้จากการกระทำกับปัจจัยที่สามารถควบคุมได้และถ้าเป็นในกรณีนี้เราสามารถใช้วิธีการควบคุม ปฏิกริยา กับปัจจัยรบกวนในการลดผลกระทบจากปัจจัยรบกวน
1. ผลกระทบที่ไม่เป็นเส้นตรง (Non-Linear Effects) โดยอาศัย Response Surface DOE เพื่อศึกษาผลของความโค้ง และกำลังสอง ตามที่เห็นในกราฟด้านล่าง จะเห็นว่าปัจจัย B มีผลที่เป็นกำลังสองต่อค่าตอบสนอง Y |
ค่าความลาดเอียงของเส้นโค้งจะมีค่ามาก (ความชันมาก)ที่ค่า B น้อยๆ (B-) และความลาดเอียงของเส้นโค้งจะ มีค่าน้อย (เส้นโค้งลักษณะราบแบน) ที่ค่า B มากๆ (B+) จุดที่เส้นโค้งมีความราบแบบเรียกว่า “sweet spot” ถึงแม้ว่า ค่าความผันแปรของ B จะมีค่าเกือบเท่ากันในระดับปัจจัยของ Bทั้ง – และ + แต่ขนาดความผันแปรที่มีผลต่อค่า ตอบสนอง Y มีค่าน้อยลงมากที่ค่าระดับ B+ (จุด Sweet spot) ดังนั้นการตั้งค่ากระบวนการของปัจจัย B ที่ระดับ B+ ย่อมทำให้กระบวนการ มีความไวต่อการเปลี่ยนแปลงของความผันแปรได้ดีกว่า 2. ผลกระทบที่มีอิทธิพลร่วม (Interaction Effect) จากกราฟด้านล่างที่แสดงอิทธิพลร่วมระหว่างปัจจัยรบกวน B และปัจจัยที่สามารถควบคุมได้ C |
ค่าความลาดเอียงของเส้นตรงแสดงถึงผลกระทบของปัจจัยรบกวน B ส่วน 2 เส้น เป็นผลที่เกิดที่ปัจจัย C ในระดับที่ ต่างกัน ซึ่งจะเห็นว่าผลที่มาจากปัจจัยรบกวน B มีขนาดเล็กเมื่อ C อยู่ที่ระดับ – (C-) ดังนั้นเราจึงสามารถใช้ปัจจัย C เพื่อลด ผลกระทบที่เกิดจากปัจจัยรบกวน B และทำให้กระบวนการมีความไวต่อการเปลี่ยนแปลงอันเนื่องมาจากปัจจัย รบกวน B ได้ ตัวอย่างในกระบวนการผลิต
ภาระแรงขนาดต่างๆ กัน ปัจจัยรบกวนในที่นี้ คือ ภาระแรง ซึ่งได้มีการทดสอบที่ 2 ค่าระดับ คือ ไม่มีภาระแรง ซึ่งกำหนด เป็นระดับ – (Noise - ) และมีภาระแรงขนาดใหญ่ ซึ่งกำหนดเป็นระดับ + (Noise +) และมีปัจจัยที่สามารถ ควบคุมได้อีก 3 ตัว คือ ชนิดของจาระบี ชนิดของลูกปืน(Bearing) และ แรงสปริง (Spring Force) ซึ่งแต่ละปัจจัยจะมีการ ตั้งค่าไว้ 2 ระดับ ดังนั้นการทดลองจึงถูกออกแบบเป็น 23 และแต่ละเงื่อนไขการทดลองมีการทำซ้ำ 2 ครั้ง จึงได้การทดลอง ออกมาทั้งหมด 16 ค่า (8*2 = 16 ในแต่ละครั้งการทดลองจะมีผลของปัจจัยรบกวนร่วมอยู่ด้วย) ค่าตอบสนองคือ ค่าความเร็วที่เพิ่มขึ้นในการปรับเอนเบาะ (Acceleration signal) แต่ละครั้งการทดลองจะต้อง ทำการใส่ภาระแรงที่เป็นศูนย์ (Noise – ) และ ภาระแรงขนาดใหญ่ (Noise +) ผลที่เกิดจากปัจจัยรบกวน คือ
ค่าความแตกต่างที่ได้จากผลการทดลองทั้ง 2 ครั้ง (Noise effect = (“ Noise-” ) – (“Noise+”) ) เกิดจากปัจจัยรบกวน ซึ่งหมายถึงการลดค่าความเร็วที่เพิ่มขึ้นในการปรับเอนเบาะ
ที่เหมาะสมของทั้งสองค่านี้มีความสำคัญต่อระบบอย่างมาก อิทธิพลจากปัจจัยรบกวน (คอลัมน์ C6: Effect หรือ Noise effect) และค่าเฉลี่ยของค่าความเร็วที่เพิ่มขึ้นในการ ปรับเอนเบาะ (คอลัมน์ C7: Mean) |
แผนภาพพาเรโตแสดงอิทธิพลของแต่ละปัจจัยที่มีผลต่อค่าเฉลี่ยค่าความเร็วที่เพิ่มขึ้นในการปรับเอนเบาะ ระหว่างชนิดลูกปืนและชนิดจาระบี กับชนิดลูกปืนและแรงสปริงก็แสดงผลอย่างมีนัยสำคัญเช่นกัน (อิทธิพลดังกล่าวดูจาก แท่งกราฟที่เลยเส้นสีแดงที่เป็นเส้นแบ่งความมีนัยสำคัญ) |
แผนภาพลูกบากศ์แสดงให้เห็นว่า ชนิดลูกปืนที่ระดับ -1 และ ชนิดจาระบีที่ระดับ +1 ทำให้เกิดค่าค่าความเร็วที่เพิ่มขึ้น ในการปรับเอนเบาะมีค่าต่ำ |
จากแผนภาพอิทธิพลร่วมแสดงให้เห็นว่า อิทธิพลร่วมของชนิดลูกปืนและชนิดจาระบีที่มีผลต่อค่าเฉลี่ยตอบสนอง เมื่อใช้ชนิดลูกปืนที่ระดับ -1 การใช้จาระบีชนิดใดไม่ได้ส่งผลกระทบต่อค่าค่าความเร็วที่เพิ่มขึ้นในการปรับเอนเบาะ |
ปัจจัยที่สามารถควบคุมได้สามารถส่งผลกระทบต่อปัจจัยรบกวน เมื่อผลของปัจจัยรบกวนถือเป็นค่าตอบสนองของระบบ จะเห็นได้ว่า อิทธิพลของปัจจัย A (ชนิดของลูกปืน) และปัจจัย B (ชนิดของจาระบี) และ อิทธิพลร่วมของปัจจัย AB แสดงผลอย่างมีนัยสำคัญ |
จากแผนภาพของอิทธิผลร่วม (Interaction effect plot) จะเห็นได้ว่าอิทธิพลร่วมของชนิดลูกปืนและชนิดจาระบี มีผลต่อค่าตอบสนองปัจจัยรบกวน ชนิดลูกปืนในระดับ -1 ทำให้ผลของปัจจัยรบกวนมีขนาดเล็ก และถ้าใช้ชนิด ลูกปืนในระดับ – ชนิดจาระบีใดใดจะไม่ส่งผลต่อปัจจัยรบกวน |
บทสรุป ในการปรับเอนเบาะและผลของปัจจัยรบกวนได้เป็นอย่างดี ดังนั้นระบบที่มีการเปลี่ยนแปลงภาระแรงจะมีความสเถียรมากขึ้น ซึ่งเป็นวัตถุประสงค์ของการศึกษาการทดลองครั้งนี้ หลังจากที่เราทำการศึกษาผลของปัจจัยที่ควบคุมได้ที่มีผลต่อปัจจัยรบกวน โดยตรง แทนที่จะทำการศึกษาด้วยวิธีอื่นๆที่มีความซับซ้อนเช่น Taguchi’s signal to noise ratio ซึ่งจะเห็นได้ว่าวิธีนี้สามารถ ทำความเข้าใจได้ง่ายกว่า
และผลิตภัณฑ์ที่มีความไวต่อความผันแปรของปัจจัยแวดล้อมได้ดี
Comments ถ้าเป็นไปได้คุณช่วยอธิบายการทดลองแต่ละครั้ง (run) ที่ทำได้หรือไม่ว่าต้องทำอย่างไร และในแต่ละเงื่อนไขการทดลอง (แต่ละแถวในแผ่นงาน) แต่ละครั้งที่ปัจจัยรบกวนต่างระดับกัน แล้วทำการหาค่าเฉลี่ยค่าความเร็วที่เพิ่มขึ้นในการปรับเอน คำนวณมาอย่างไร
Name: Bruno Scibilia โดยในแต่ละเงื่อนไขการทดลอง (run) ครั้งที่ 1 จะทำที่ปัจจัยรบกวนที่ระดับlow และอีกครั้งทำที่ปัจจัยรบกวนระดับ High จากนั้นจะหาค่าเฉลี่ยค่าตอบสนองในแต่ละแถว รวมทั้งหาค่าผลต่างของข้อมูลที่ได้ในแต่ละแถวเช่นกัน (ซึ่งค่าผลต่างเป็น
ค่าอิทธิพลที่ได้จากปัจจัยรบกวน) อยู่คนละคอลัมน์ แผ่นงานการทดลองจะจัดตารางใหม่ให้ปัจจัยรบกวนมีคอลัมน์เดียว และแบ่งข้อมูลจำนวนแถวทั้งหมด เป็นครึ่งหนึ่ง ครึ่งด้านบนของตารางเป็นปัจจัยรบกวนที่ระดับ Low และ อีกครึ่งที่เหลือเป็นปัจจัยรบกวนระดับ high ซึ่งถ้าทำแบบนี้จะสามารถหาอิทธิพลร่วม (interaction effect) ของปัจจัยอื่นกับ ปัจจัยรบกวนได้ด้วย (ปัจจัยรบกวนจะมี 1 คอลัมน์เท่านั้น) ซึ่งก็มีความหมายเหมือนกับการทดลองที่ทำในตัวอย่างข้างต้น |
|
บทความต้นฉบับ : http://blog.minitab.com/blog/applying-statistics-in-quality-projects/using-design-of- experiments-to-minimize-noise-effects แปลและเรียบเรียงโดย สุวดี นำพาเจริญ และ ชลทิชา จำรัสพร, บริษัท โซลูชั่น เซ็นเตอร์ จำกัด E-mail : webadmin@solutioncenterminitab.com www.SolutionCenterMinitab.Com |
บทความนี้เกิดจากการเขียนและส่งขึ้นมาสู่ระบบแบบอัตโนมัติ สมาคมฯไม่รับผิดชอบต่อบทความหรือข้อความใดๆ ทั้งสิ้น เพราะไม่สามารถระบุได้ว่าเป็นความจริงหรือไม่ ผู้อ่านจึงควรใช้วิจารณญาณในการกลั่นกรอง และหากท่านพบเห็นข้อความใดที่ขัดต่อกฎหมายและศีลธรรม หรือทำให้เกิดความเสียหาย หรือละเมิดสิทธิใดๆ กรุณาแจ้งมาที่ ht.ro.apt@ecivres-bew เพื่อทีมงานจะได้ดำเนินการลบออกจากระบบในทันที